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2 Vector spaces with additional structure

In the following K denotes a �eld which might be either R or C.

De�nition 2.1. Let V be a vector space over K. A subset A of V is called
balanced i� for all v ∈ A and all λ ∈ K with |λ| ≤ 1 the vector λv is contained
in A. A subset A of V is called convex i� for all x, y ∈ V and t ∈ [0, 1] the
vector (1 − t)x + ty is in A. Let A be a subset of V . Consider the smallest
subset of V which is convex and which contains A. This is called the convex
hull of A, denoted conv(A).

Proposition 2.2. (a) Intersections of balanced sets are balanced. (b) The

sum of two balanced sets is balanced. (c) A scalar multiple of a balanced set

is balanced.

Proof. Exercise.

Proposition 2.3. Let V be vector space and A a subset. Then

conv(A) =

{
n∑

i=1

λixi : λi ∈ [0, 1], xi ∈ A,

n∑
i=1

λi = 1

}
.

Proof. Exercise.

We denote the space of linear maps between a vector space V and a
vector space W by L(V, W ).

2.1 Topological vector spaces

De�nition 2.4. A set V that is equipped both with a vector space structure
over K and a topology is called a topological vector space (tvs) i� the vector
addition + : V × V → V and the scalar multiplication · : K × V → V are
both continuous. (Here the topology on K is the standard one.)

Proposition 2.5. Let V be a tvs, λ ∈ K \ 0, w ∈ V . The maps V →
V : v 7→ λv and V → V : v 7→ v + w are automorphisms of V as a tvs. In

particular, the topology T of V is invariant under rescalings and translations:

λT = T and T + w = T . In terms of �lters of neighborhoods, λNv = Nλv

and Nv + w = Nv+w for all v ∈ V .

Proof. It is clear that non-zero scalar multiplication and translation are vec-
tor space automorphisms. To see that they are also continuous use Propo-
sition 1.16. The inverse maps are of the same type hence also continuous.
Thus we have homeomorphisms. The scale- and translation invariance of the
topology follows.
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Note that this implies that the topology of a tvs is completely determined
by the �lter of neighborhoods of one of its points, say 0.

De�nition 2.6. Let V be a tvs and U a subset. U is called bounded i� for
every neighborhood W of 0 there exists λ ∈ R+ such that U ⊆ λW .

Remark: Changing the allowed range of λ in the de�nition of bound-
edness from R+ to K leads to an equivalent de�nition, i.e., is not weaker.
However, the choice of R+ over K is more convenient in certain applications.

Proposition 2.7. Let V be a tvs. Then:

1. Every point set is bounded.

2. Every neighborhood of 0 contains a balanced subneighborhood of 0.

3. Let U be a neighborhood of 0. Then there exists a subneighborhood W
of 0 such that W + W ⊆ U .

Proof. We start by demonstrating Property 1. Let x ∈ V and U some
open neighborhood of 0. Then Z := {(λ, y) ∈ K × V : λy ∈ U} is open
by continuity of multiplication. Also (0, x) ∈ Z so that by the product
topology there exists an ε > 0 and an open neighborhood W of x in V such
that Bε(0) × W ⊆ Z. In particular, there exists µ > 0 such that µx ∈ U ,
i.e., {x} ⊆ µ−1U as desired.

We proceed to Property 2. Let U be an open neighborhood of 0. By
continuity Z := {(λ, x) ∈ K × V : λx ∈ U} is open. By the product
topology, there are open neighborhoods X of 0 ∈ K and W of 0 ∈ V such
that X × W ⊆ Z. Thus, X · W ⊆ U . Now X contains an open ball of
some radius ε > 0 around 0 in K. Set Y := Bε(0) · W . This is an (open)
neighborhood of 0 in V , it is contained in U and it is balanced.

We end with Property 3. Let U be an open neighborhood of 0. By
continuity Z := {(x, y) ∈ V × V : x + y ∈ U} is open. By the product
topology, there are open neighborhoods W1 and W2 of 0 such that W1×W2 ⊆
Z. This means W1 + W2 ⊆ U . Now de�ne W := W1 ∩ W2.

Proposition 2.8. Let V be a vector space and F a �lter on V . Then F
is the �lter of neighborhoods of 0 for a compatible topology on V i� 0 is

contained in every element of F and λF = F for all λ ∈ K \ {0} and F
satis�es the properties of Proposition 2.7.

Proof. It is already clear that the properties in question are necessary for F
to be the �lter of neighborhoods of 0 of V . It remains to show that they are
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su�cient. If F is to be the �lter of neighborhoods of 0 then, by translation
invariance, Fx := F + x must be the �lter of neighborhoods of the point x.
We show that the family of �lters {Fx}x∈V does indeed de�ne a topology
on V . To this end we will use Proposition 1.10. Property 1 is satis�ed
by assumption. It remains to show Property 2. By translation invariance
it will be enough to consider x = 0. Suppose U ∈ F . Using Property 3
of Proposition 2.7 there is W ∈ F such that W + W ⊆ U . We claim that
Property 2 of Proposition 1.10 is now satis�ed with this choice of W . Indeed,
let y ∈ W then y + W ∈ Fy and y + W ⊆ U so U ∈ Fy as required.

We proceed to show that the topology de�ned in this way is compatible
with the vector space structure. Take an open set U ⊆ V and consider
its preimage Z = {(x, y) ∈ V × V : x + y ∈ U} under vector addition.
Take some point (x, y) ∈ Z. U − x − y is an open neighborhood of 0. By
Property 3 of Proposition 2.7 there is an open neighborhood W of 0 such
that W + W = U − x − y, i.e., (x + W ) + (y + W ) ⊆ U . But x + W
is an open neighborhood of x and y + W is an open neighborhood of y so
(x + W )× (y + W ) is an open neighborhood of (x, y) in V × V contained in
Z. Hence vector addition is continuous.

We proceed to show continuity of scalar multiplication. Consider an
open set U ⊆ V and consider its preimage Z = {(λ, x) ∈ K × V : λx ∈ U}
under scalar multiplication. Take some point (λ, x) ∈ Z. U − λx is an
open neighborhood of 0 in V . By Property 3 of Proposition 2.7 there is an
open neighborhood W of 0 such that W + W = U − λx. By Property 2
of Proposition 2.7 there exists a balanced subneighborhood X of W . By
Property 1 of Proposition 2.7 (boundedness of points) there exists ε > 0
such that εx ∈ X. Since X is balanced, Bε(0) · x ⊆ X. Now de�ne Y :=
(ε + |λ|)−1X. Note that scalar multiples of (open) neighborhoods of 0 are
(open) neighborhoods of 0 by assumption. Hence Y is open since X is. Thus
Bε(λ) × (x + Y ) an open neighborhood of (λ, x) in K × V . We claim that
it is contained in Z. First observe that since X is balanced, Bε(0) · x ⊆ X.
Similarly, we have Bε(λ) · Y ⊆ Bε+|λ|(0) · Y = B1(0) · X ⊆ X. Thus we
have Bε(0) · x + Bε(λ) · Y ⊆ X + X ⊆ W + W ⊆ U − λx. But this implies
Bε(λ) · (x + W ) ⊆ U as required.

Proposition 2.9. In a tvs every neighborhood of 0 contains a closed and

balanced subneighborhood.

Proof. Let U be a neighborhood of 0. By Proposition 2.7.3 there exists a
subneighborhood W ⊆ U such that W + W ⊂ U . By Proposition 2.7.2
there exists a balanced subneighborhood X ⊆ W . Let Y := X. Then, Y is
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obviously a closed neighborhood of 0. Also Y is balanced, since for y ∈ Y
and λ ∈ K with 0 < |λ| ≤ 1 we have λy ∈ λX = λX ⊆ X = Y . Finally, let
y ∈ Y = X. Any neighborhood of y must intersect X. In particular, y + X
is such a neighborhood. Thus, there exist x ∈ X, z ∈ X such that x = y +z,
i.e., y = x − z ∈ X − X = X + X ⊆ U . So, Y ⊆ U .

Proposition 2.10. (a) Subsets of bounded sets are bounded. (b) Intersec-

tions and �nite unions of bounded sets are bounded. (c) The closure of a

bounded set is bounded. (d) The sum of two bounded sets is bounded. (e) A

scalar multiple of a bounded set is bounded. (f) Compact sets are bounded.

Proof. Exercise.

Let A,B be topological vector spaces. We denote the space of maps from
A to B that are linear and continuous by CL(A,B).

De�nition 2.11. Let A,B be tvs. A linear map f : A → B is called bounded

i� there exists a neighborhood U of 0 in A such that f(U) is bounded. A
linear map f : A → B is called compact i� there exists a neighborhood U of
0 in A such that f(U) is compact.

Let A, B be tvs. We denote the space of maps from A to B that are
linear and bounded by BL(A,B).

Proposition 2.12. Let A,B be tvs and f ∈ L(A,B). (a) f is continuous i�

the preimage of any neighborhood of 0 in B is a neighborhood of 0 in A. (b)

If f is continuous it maps bounded sets to bounded sets. (c) If f is bounded

then f is continuous, i.e., BL(A,B) ⊆ CL(A,B). (d) If f is compact then

f is bounded.

Proof. Exercise.

A useful property for a topological space is the Hausdor� property, i.e.,
the possibility to separate points by open sets. It is not the case that a
tvs is automatically Hausdor�. However, the way in which a tvs may be
non-Hausdor� is severly restricted. Indeed, we shall see int the following
that a tvs may be split into a part that is Hausdor� and another one that is
maximally non-Hausdor� in the sense of carrying the trivial topology.

Proposition 2.13. Let V be a tvs and C ⊆ V a vector subspace. Then, the

closure C of C is also a vector subspace of V .

Proof. Exercise.[Hint: Use Proposition 1.32.]



Robert Oeckl � FA NOTES 2 � 05/03/2010 5

Proposition 2.14. Let V be a tvs. The closure of {0} in V coincides with

the intersection of all neighborhoods of 0. Moreover, V is Hausdor� i� {0} =
{0}.

Proof. Exercise.

Proposition 2.15. Let V be a tvs and C ⊆ V a vector subspace. Then the

quotient space V/C is a tvs. Moreover, V/C is Hausdor� i� C is closed in

V .

Proof. Exercise.

Thus, for a tvs V the exact sequence

0 → {0} → V → V/{0} → 0

describes how V is composed of a Hausdor� piece V/{0} and a piece {0}
with trivial topology. We can express this decomposition also in terms of a
direct sum, as we shall see in the following.

A (vector) subspace of a tvs is a tvs with the subset topology. Let A and
B be tvs. Then the direct sum A ⊕ B is a tvs with the product topology.
Note that as subsets of A ⊕ B, both A and B are closed.

De�nition 2.16. Let V be a tvs and A a subspace. Then another sub-
space B of A in V is called a topological complement i� V = A ⊕ B as tvs
(i.e., as vector spaces and as topological spaces). A is called topologically

complemented if such a topological complement B exists.

Note that algebraic complements (i.e., complements merely with respect
to the vector space structure) always exist (using the Axiom of Choice). How-
ever, an algebraic complement is not necessarily a topological one. Indeed,
there are examples of subspaces of tvs that have no topological complement.

Proposition 2.17 (Structure Theorem for tvs). Let V be a tvs and B an

algebraic complement of {0} in V . Then B is also a topological complement

of {0} in V . Moreover, B is canonically isomorphic to V/{0} as a tvs.

Proof. Exercise.

We conclude that every tvs is a direct sum of a Hausdor� tvs and a tvs
with the trivial topology.
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2.2 Metrizable vector spaces

In this section we considermetrizable vector spaces (mvs), i.e., tvs that admit
a metric compatible with the topology.

De�nition 2.18. Ametric on a vector space V is called translation-invariant

i� d(x + a, y + a) = d(x, y) for all x, y, a ∈ V . A translation-invariant metric
on a vector space V is called balanced i� its open balls around the origin are
balanced.

As we shall see it will be possible to limit ourselves to balanced translation-
invariant metrics on mvs. Moreover, these can be conveniently described by
pseudo-norms.

De�nition 2.19. Let V be a vector space over K. Then a map V → R+
0 :

x 7→ ‖x‖ is called a pseudo-norm i� it satis�es the following properties:

1. For all λ ∈ K, |λ| ≤ 1 implies ‖λx‖ ≤ ‖x‖ for all x ∈ V .

2. For all x, y ∈ V : ‖x + y‖ ≤ ‖x‖ + ‖y‖.

3. ‖x‖ = 0 i� x = 0.

Proposition 2.20. There is a one-to-one correspondence between pseudo-

norms and balanced translation invariant metrics on a vector space via d(x, y) :=
‖x − y‖.

Proof. Exercise.

Proposition 2.21. Let V be a vector space. The topology generated by a

pseudo-norm on V is compatible with the vector space structure i� for every

x ∈ V and ε > 0 there exists λ ∈ R+ such that x ∈ λBε(0).

Proof. Assume we are given a pseudo-norm on V that induces a compatible
topology. It is easy to see that the stated property of the pseudo-norm then
follows from Property 1 in Proposition 2.7 (boundedness of points).

Conversely, suppose we are given a pseudo-norm on V with the stated
property. We show that the �lter N0 of neighborhoods of 0 de�ned by
the pseudo-norm has the properties required by Proposition 2.8 and hence
de�nes a compatible topology on V . Firstly, it is already clear that every
U ∈ N0 contains 0. We proceed to show that N0 is scale invariant. It is
enough to show that for ε > 0 and λ ∈ K \ {0} the scaled ball λBε(0) is
open. Choose a point λx ∈ λBε(0). Take δ > 0 such that |x| < ε + δ. Then
Bδ(0) + x ⊆ Bε(0). If |λ| ≥ 1 then Bδ(λx) = Bδ(0) + λx ⊆ λBδ(0) + λx ⊆
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λBε(0) showing that λBε(0) is open. Assume now that |λ| ≤ 1 and choose
n ∈ N such that 2−n ≤ |λ|. Observe that the triangle inequality implies
B2−nδ(0) ⊆ 2−nBδ(0) (for arbitrary δ and n in fact). Hence B2−nδ(λx) =
B2−nδ(0) + λx ⊆ λBδ(0) + λx ⊆ λBε(0) showing that λBε(0) is open.

It now remains to show the properties of N0 listed in Proposition 2.7.
As for Property 3, we may take U to be an open ball of radius ε around 0
for some ε > 0. De�ne W := Bε/2(0) Then W + W ⊆ U follows from the
triangle inequality. Concerning Property 2 we simple notice that open balls
are balanced by construction. The only property that is not automatic for a
pseudo-norm and does require the stated condition is Property 1 (bounded-
ness of points). The equivalence of the two is easy to see.

Theorem 2.22. A Hausdor� tvs V is metrizable i� it is �rst-countable, i.e.,

i� there exists a countable base for the �lter of neighborhoods of 0. Moreover,

if V is metrizable it admits a compatible pseudo-norm.

Proof. It is clear that metrizability implies the existence of a countable base
of N0. For example, the sequence of balls {B1/n(0)}n∈N provides such a base.
Conversely, suppose that {Un}n∈N is a base of the �lter of neighborhoods of
0 such that all Un are balanced and Un+1 +Un+1 ⊆ Un. (Given an arbitrary
countable base of N0 we can always produce another one with the desired
properties.) Now for each �nite subset H of N de�ne UH :=

∑
n∈H Un and

λH :=
∑

n∈H 2−n. Note that each UH is a balanced neighborhood of 0.
De�ne now the function V → R+

0 : x 7→ ‖x‖ by

‖x‖ := inf
H
{λH |x ∈ UH}

if x ∈ UH for some H and ‖x‖ = 1 otherwise. We proceed to show that ‖ · ‖
de�nes a pseudo-norm and generates the topology of V .

Fix x ∈ V and λ ∈ K with |λ| ≤ 1. Since UH is balanced for each H, λx
is contained at least in the same sets UH as x. Because the de�nition of ‖ · ‖
uses an in�mum, ‖λx‖ ≤ ‖x‖. This con�rms Property 1 of De�nition 2.19.

To show the triangle inequality (Property 2 of De�nition 2.19) we �rst
note that for �nite subsets H, K of N with the property λH +λK < 1 there is
another unique �nite subset L of N such that λL = λH + λK . Furthermore,
UH + UK ⊆ UL in this situation. Now, �x x, y ∈ V . If ‖x‖ + ‖y‖ ≥ 1
the triangle inequality is trivial. Otherwise, we can �nd ε > 0 such that
‖x‖ + ‖y‖ + 2ε < 1. We now �x �nite subsets H,K of N such that x ∈ UH ,
y ∈ UK while λH < ‖x‖+ ε and λK < ‖y‖+ ε. Let L be the �nite subset of
N such that λL = λH + λK . Then x + y ∈ UL and hence ‖x + y‖ ≤ λL =
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λH +λK < ‖x‖+‖y‖+2ε. Since the resulting inequality holds for any ε > 0
we must have ‖x + y‖ ≤ ‖x‖ + ‖y‖ as desired.

If x = 0 clearly ‖x‖ = 0. Conversely, if x 6= 0 the Hausdor� property
of V implies that there exists some n ∈ N such that Un = U{n} does not
contain x. Since λH ≤ λK implies UH ⊆ UK this means ‖x‖ ≥ 2−n. This
con�rms Property 3 of De�nition 2.19.

It remains to show that the pseudo-norm generates the topology of the
tvs. Since the topology generated by the pseudo-norm as well as that of
the tvs are translation invariant, it is enough to show that the open balls
around 0 of the pseudo-norm form a base of the �lter of neighborhoods of
0 in the topology of the tvs. Let n ∈ N and ε > 0. Clearly B2−n(0) ⊆
Un ⊆ B2−n+ε(0). By the arbitraryness of ε this implies Un = B2−n(0). But
{Un}n∈N is a base of the �lter of neighborhoods of 0 by assumption. And if
the balls {B2−n(0)}n∈N form such a base then clearly all balls around 0 also
form a base. This completes the proof.

Proposition 2.23. Let V be a mvs with pseudo-norm. Let r > 0 and

0 < µ ≤ 1. Then, Bµr(0) ⊆ µBr(0).

Proof. Exercise.

Proposition 2.24. Let V , W be mvs with compatible metrics and f ∈
L(V, W ). (a) f is continuous i� for all ε > 0 there exists δ > 0 such that

f(BV
δ (0)) ⊆ BW

ε (0). (b) f is bounded i� there exists δ > 0 such that for all

ε > 0 there is µ > 0 such that f(µBV
δ (0)) ⊆ BW

ε (0).

Proof. Exercise.

2.3 Normed vector spaces

De�nition 2.25. A tvs is called locally bounded i� it contains a bounded
neighborhood of 0.

Proposition 2.26. A locally bounded Hausdor� tvs is metrizable.

Proof. Let V be a locally bounded Hausdor� tvs and U a bounded neighbor-
hood of 0 in V . The sequence {Un}n∈N with Un := 1

nU is the base of a �lter
F on V . Take a neighborhood W of 0. By boundedness of U there exists
λ ∈ R+ such that U ⊆ λW . Choosing n ∈ N with n ≥ λ we �nd Un ⊆ W ,
i.e., W ∈ F . Hence F is the �lter of neighborhoods of 0 and we have pre-
sented a countable base for it. By Theorem 2.22, V is metrizable.
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Proposition 2.27. Let A,B be a tvs and f ∈ CL(A,B). If A or B is locally

bounded then f is bounded. Hence, CL(A,B) = BL(A,B) in this case.

Proof. Exercise.

De�nition 2.28. A tvs is called locally convex i� every neighborhood of 0
contains a convex neighborhood of 0.

De�nition 2.29. Let V be a vector space over K. Then a map V → R+
0 :

x 7→ ‖x‖ is called a norm i� it satis�es the following properties:

1. ‖λx‖ = |λ|‖x‖ for all λ ∈ K, x ∈ V .

2. For all x, y ∈ V : ‖x + y‖ ≤ ‖x‖ + ‖y‖.

3. ‖x‖ = 0 =⇒ x = 0.

A norm is a pseudo-norm and hence induces a metric and a topology.

Proposition 2.30. The topology induced by a norm on a vector space makes

it into a tvs.

Proof. Since a norm is in particular a pseudo-norm we may apply Proposi-
tion 2.21. Indeed, let V be a vector space with a norm ‖ · ‖. Take x ∈ V and
ε > 0. Then x ∈ λBε(0) if we choose λ > 0 such that ‖x‖ < λε, satisfying
the condition of the Proposition.

In the following we shall be interested in normed vector spaces, i.e., vector
spaces equipped with a norm.

Theorem 2.31. A Hausdor� tvs V is normable i� V is locally bounded and

locally convex.

Proof. Suppose V is a normed vector space. It is easy to see that every
ball is bounded and also convex, so in particular, V is locally bounded and
locally convex.

Conversely, suppose V is a Hausdor� tvs that is locally bounded and
locally convex. Take a bounded neighborhood U1 of 0 and a convex sub-
neighborhood U2 of U1. Now take a balanced subneighborhood U3 of U2 and
its convex hull W = conv(U3). Then W is a balanced, convex and bounded
(since W ⊆ U2 ⊆ U1) neighborhood of 0 in V . De�ne the Minkowski func-

tional ‖ · ‖W : V → R+
0 associated with W as

‖x‖W := inf{λ ∈ R+
0 : x ∈ λW}.
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We claim that ‖ · ‖W de�nes a norm on V that is compatible with its topol-
ogy. Linearity (Property 1 of De�nition 2.29) follows by noticing that bal-
ancedness of W implies λW = |λ|W for λ ∈ K. The triangle inequal-
ity (Property 2 of De�nition 2.29) can be seen as follows: Given points
x, y ∈ V we �x some ε > 0. Now choose µx > 0 and µy > 0 such that
µx < ‖x‖W + ε and µy < ‖y‖W + ε while x ∈ µxW and y ∈ µyW . Thus
µ−1

x x ∈ W and µ−1
y y ∈ W . Set t := µx/(µx + µy). Convexity of W implies

(x + y)/(µx + µy) = tµ−1
x x + (1 − t)µ−1

y y ∈ W . Hence x + y ∈ (µx + µy)W
and thus ‖x + y‖W ≤ µx + µy < ‖x‖W + ‖y‖W + 2ε. Since ε was arbitrary
‖x + y‖W ≤ ‖x‖W + ‖y‖W follows. We proceed to show de�niteness (Prop-
erty 3 of De�nition 2.29). Take x 6= 0. By the Hausdor� property there is
a neighborhood U of 0 that does not contain x. Since W is bounded there
exists λ ∈ R+ such that W ⊆ λU . Hence µW ⊆ λ−1W ⊆ U for all µ ≤ λ−1

since W is balanced. This means x /∈ µW for µ ≤ λ−1 and thus ‖x‖W ≥ λ−1.
It remains to show that the topology generated by the norm ‖ · ‖W coin-

cides with the topology of V . Let U be an open set in the topology of V and
x ∈ U . The ball B1(0) de�ned by the norm is bounded since B1(0) ⊆ W
and W is bounded. Hence there exists λ ∈ R+ such that B1(0) ⊆ λ(U − x),
i.e., λ−1B1(0) ⊆ U − x. But λ−1B1(0) = Bλ−1(0) by linearity and thus
Bλ−1(x) ⊆ U . Hence, U is open in the norm topology as well. Conversely,
consider a ball Bε(0) de�ned by the norm for some ε > 0 and take x ∈ Bε(0).
Choose δ > 0 such that µW (x) < ε + δ. Observe that 1

2W ⊆ B1(0) and thus

by linearity δ
2W ⊆ Bδ(0). It follows that δ

2W + x ⊆ Bε(0). But δ
2W + x

is a neighborhood of x so it follows that Bε(0) is open. This completes the
proof.

Proposition 2.32. Let V be a normed vector space and U ⊆ V a subset.

Then, U is bounded i� there exists c ∈ R+ such that ‖x‖ ≤ c for all x ∈ U .

Proof. Exercise.

Proposition 2.33. Let A,B be normed vector spaces and f ∈ L(A,B). f
is bounded i� there exists c ∈ R+ such that ‖f(x)‖ ≤ c ‖x‖ for all x ∈ A.

Proof. Exercise.

2.4 Inner product spaces

As before K stands for a �eld that is either R or C.

De�nition 2.34. Let V be a vector space over K and 〈·, ·〉 : V × V → K a
map. 〈·, ·〉 is called a bilinear (if K = R) or sesquilinear (if K = C) form i�
it satis�es the following properties:
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• 〈u + v, w〉 = 〈u,w〉 + 〈v, w〉 and
〈u, v + w〉 = 〈u, v〉 + 〈u,w〉 for all u, v, w ∈ V .

• 〈λu, v〉 = λ〈u, v〉 and 〈u, λv〉 = λ〈u, v〉 for all λ ∈ K and v ∈ V .

〈·, ·〉 is called symmetric (if K = R) or hermitian (if K = C) i� it satis�es in
addition the following property:

• 〈u, v〉 = 〈v, u〉 for all u, v ∈ V .

〈·, ·〉 is called positive i� it satis�es in addition the following property:

• 〈v, v〉 ≥ 0 for all v ∈ V .

〈·, ·〉 is called de�nite i� it satis�es in addition the following property:

• If 〈v, v〉 = 0 then v = 0 for all v ∈ V .

A map with all these properties is also called a scalar product or an inner

product. V equipped with such a structure is called an inner product space

or a pre-Hilbert space.

Theorem 2.35 (Schwarz Inequality). Let V be a vector space over K with a

scalar product 〈·, ·〉 : V × V → K. Then, the following inequality is satis�ed:

|〈v, w〉|2 ≤ 〈v, v〉〈w, w〉 ∀v, w ∈ V.

Proof. By de�niteness α := 〈v, v〉 6= 0 and we set β := −〈w, v〉. By positivity
we have,

0 ≤ 〈βv + αw, βv + αw〉.

Using bilinearity and symmetry (if K = R) or sesquilinearity and hermiticity
(if K = C) on the right hand side this yields,

0 ≤ |〈v, v〉|2〈w,w〉 − 〈v, v〉|〈v, w〉|2.

(Exercise.Show this.) Since 〈v, v〉 6= 0 we can divide by it and arrive at the
required inequality.

Proposition 2.36. Let V be a vector space over K with a scalar product

〈·, ·〉 : V × V → K. Then, V is a normed vector space with norm given by

‖v‖ :=
√
〈v, v〉.

Proof. Exercise.Hint: To prove the triangle inequality, show that ‖v+w‖2 ≤
(‖v‖+‖w‖)2 can be derived from the Schwarz inequality (Theorem 2.35).
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Proposition 2.37. Let V be an inner product space. Then, ∀v, w ∈ V ,

〈v, w〉 =
1
4

(
‖v + w‖2 − ‖v − w‖2

)
if K = R,

〈v, w〉 =
1
4

(
‖v + w‖2 − ‖v − w‖2 + i‖v + iw‖2 − i‖v − iw‖2

)
if K = C

Proof. Exercise.

Proposition 2.38. Let V be an inner product space. Then, its scalar product

V × V → K is continuous.

Proof. Exercise.

Theorem 2.39. Let V be a normed vector space. Then, there exists a scalar

product on V inducing the norm i� the parallelogram equality holds,

‖v + w‖2 + ‖v − w‖2 = 2‖v‖2 + 2‖w‖2 ∀v, w ∈ V.

Proof. Exercise.

Example 2.40. The spaces Rn and Cn are inner product spaces via

〈v, w〉 :=
n∑

i=1

viwi,

where vi, wi are the coe�cients with respect to the standard basis.


